

Ground Technologies Pty Ltd ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

Geotechnical Testing Services

GTE1355 – Preliminary Contamination And Salinity Report 19 October 2017

Client: Club Marconi c/- Restifa & Partners Pty Ltd Suite 302, 123 Walker Street North Sydney 2060

Attention: Sam Restifa E-mail: <u>Sam@restifa.com.au</u>

Dear Sir,

RE: PRELIMINARY CONTAMINATION AND SALINITY ASSESSMENT at No.121-133 Prairie Valley Road, Bossley Park

This report presents a Preliminary Contamination And Salinity Assessment on the inspection and testing services undertaken at the above project.

Should you have any questions related to this report please do not hesitate to contact the undersigned.

For and on behalf of Ground Technologies Pty Ltd

Reviewed By

Jasmineljeges

J.George Environmental Engineer

enntH

A.Bennett Senior Geotechnical Engineer

Contents

1. INTE	RODUCTION	4					
2. SCO	PE OF WORK	4					
3. SITE	DESCRIPTION	4					
4. SITE	E CONDITION AND SURROUNDING ENVIRONMENT	5					
5. SITE	E GEOLOGY	5					
6. SITE	E HISTORY	5					
6.1	Aerial Photographs:	5					
6.2	Search of Contaminated Land Management Register (NSW EPA):	7					
6.3	Search of Protection of Environment Operations Public Register(POEO)	7					
	ENTIAL SOURCES OF CONTAMINATION						
	IPLING AND ANALYSIS PLAN						
8.1	Sampling Points						
8.2 8.3	Sampling Methodology Soil Profiles						
o.s 8.4	Groundwater						
	SIS FOR ASSESMENT CRITERIA						
	ORATORY TEST RESULTS - CHEMICAL CONTAMINATION						
10.1	Discussion of Laboratory Test Results						
	INITY ASSESSMENT						
12. LAB	ORATORY TEST RESULTS – SALINITY	14					
13. LAB	ORATORY TEST RESULTS – ASBESTOS	15					
13.1	Discussion of Laboratory Test Results						
14. LAB	ORATORY QUALITY ASSESSMENT AND QUALITY CONTROL	16					
14.1	Laboratory Accreditation	16					
14.2	Laboratory Duplicate Results						
14.3	Laboratory Blanks						
14.4	Laboratory Control Spikes						
14.5	Laboratory Matrix Spikes						
	TATIONS AND RECOMMENDATIONS						
	ERENCES:						
17. KEF	ERENCES	17					
	SUMMARY OF SITE DETAILS	4					
		4					
	SUMMARY OF FIELD OBSERVATIONS						
	BOREHOLE PROFILE						
TABLE 4 –	FILL DEPTH	9					
TABLE 5 -	SITE ASSESSMENT CRITERIA	10					
TABLE 6 L	ABORATORY TEST RESULTS – CHEMICAL CONTAMINATION	11					
TABLE 7 : ANALYSIS OF THE SOIL SAMPLES (SALINITY)							
	ANALYSIS OF THE SOIL SAMPLES (AGGRESSIVENESS)						
	LABORATORY TEST RESULTS FOR ASBESTOS IDENTIFICATION						
		-					

Appendix A – Search results of EPA Contaminated Land Register

- Appendix B Search of POEO register of licensed and delicensed premises
- Appendix C Borehole Logs
- Appendix D Laboratory Test Certificated

EXECUTIVE SUMMARY

Ground Technologies Pty Ltd have undertaken a Preliminary Contamination Investigation and Salinity Report at Club Marconi, No. 121-133 Prairie Valley Road, Bossley Park. It is understood that this preliminary investigation was undertaken for due diligence purposes prior to re-development of the site. No details pertaining to the re-development were made available to Ground Technologies at the time of preparing this report. Borehole and sampling locations were were provided by Mr. Sam Restifa to determine the quality of the subsurface soil material within the marked areas given in figure 6.

The objective of the preliminary Contamination and Salinity Report (factual) was to ascertain whether the sub-surface material present within the boreholes sampled on site poses a risk to human health and/or the environment at the site or neighbouring properties. This was achieved by undertaking a brief desk top study and a sampling regime as advised by the client.

The conclusions of this preliminary contamination report are as follows:

- A review of aerial photography suggests that the neighbouring properties are residential and not considered to have posed a risk for potential contamination to the site.
- A search of the NSW EPA Contaminated Land Management record of notices revealed that there were no notices issued to the subject site. No history of dangerous manufacturing utilizing heavy chemicals or metals was documented.
- Significant filling was observed predominantly at the south-west portion of the site. The source of this fill material is unknown.
- Eleven borehole and sampling locations were requested to be investigated as a part of this investigation in order to determine the quality of the subsurface soil material.
- Twenty four (24) samples were submitted for chemical analysis. The concentrations of all Heavy Metals, PAHs, Petroleum Hydrocarbons and BTEX were well below the Health Investigation Levels (HIL) for all four different exposure settings.
- Eight (8) samples were submitted for salinity analysis. The electrical conductivity results indicate that the soil salinity is predominately non saline to slightly saline, with the exception of two samples which were moderately saline.
- Eight (8) samples were submitted for aggressivity analysis. The laboratory test values of sulphates, chlorides and pH indicate that the soil samples are not aggressive to both steel and concrete.
- One (1) small piece of cement sheeting was recovered from borehole 5 at the time of the site investigation and was identified by laboratory analysis as a piece of asbestos chrysotile cement sheeting (approximately 20 x18 x 7mm). No other signs of bonded asbestos or asbestos fibres were observe during the field investigation. No asbestos was identified by laboratory analysis within the recovered laboratory samples from the remaining boreholes (BH1-4, BH6-11).

The above report is only a primary contamination and salinity investigation (factual investigation) assessment which comprises a brief desktop study and sub-surface investigation of the fill material at eleven boreholes within the site as advised by the client. The initial results indicate that there is a low risk of widespread contamination across the site, as chemical levels in all samples were below the Health Investigation Levels (HIL) for all four different exposure settings. One potenetial asbestos contamination hot spot was observed at the location of borehole BH5. Hence It is recommended that an additional assessment (detailed investigation) be undertaken at the time of proposed development works to further determine the full nature, location and likely distribution of any contamination of the fill material within the subject site.

It is understood that the north-western portion of the site, currently covered by a car park, is to potentially be re-developped for Independent Unit Living. Based upon the results of this preliminary study, the site would be low risk of presenting a contamination risk, especially if the development was to comprise an apartment style development with limited site access to soils (HIL B assessment criteria).

1. INTRODUCTION

Ground Technologies Pty Ltd have undertaken a Preliminary Contamination Investigation and Salinity Report at Club Marconi, No. 121-133 Prairie Valley Road, Bossley Park. It is understood that this preliminary investigation was undertaken for due diligence purposes prior to re-development of the site. No details pertaining to the re-development were made available to Ground Technologies at the time of preparing this report. Borehole and sampling locations were were provided by Mr. Sam Restifa to determine the quality of the subsurface soil material within the marked areas given in figure 6.

2. SCOPE OF WORK

The following scope of work was conducted:

- Desktop Study of the following to assist in identification of potential contamination issues:
 - Data from Environment Protection Authority
 - o Scheduled premises
 - o Sites which are likely contaminated and not contaminated
 - Data from the Protection of the Environment Operations Public Register (POEO)
- Review of soils and geological maps.
- Review of aerial photography
- Site Inspection by a Geotechnical Engineer to ascertain current activities, and any visible signs of contamination.
- Collection of soil samples (fill material) by a Geotechnical Engineer according to a sampling plan (11 Boreholes) marked out by the client.
- Chemical analysis by a NATA accredited laboratory.
- Assessment of the results of the chemical analysis against the appropriate guidelines.
- Preparation of the Contamination Report.

3. SITE DESCRIPTION

Table 1 - Summary of Site Details

·								
Site Address	121-133 Prairie Vale Road Bossley Park							
Council Area	Fairfield City Council							
Lot / DP	Lot 5 Section B DP6934, Lot 6 Section B DP 6934, Lot 1 DP 332770, Lot 3B DP 407243, Lot 7 DP664803							

Figure 1 – Site Location

4. SITE CONDITION AND SURROUNDING ENVIRONMENT

The site investigation was conducted on 13th and 14th September 2017. The field observations are summarised in the table below:

Parameter	Observation								
Visible observations on soil	No visible evidence of contamination was observed, however a small piece								
contamination	of asbestos cement sheeting was recovered from borehole 5. No staining								
	of the soils or odours were documented.								
Signs of plant stress	None observed.								
Signs of Agriculture	None observed. No visible indicators of tilled land								
Presence of drums or waste materials	No visible indicators of underground fuel tanks (bowsers or venting pipes)								
Presence of fill	Significant filling was observed across the majority of the site, however, deep fill was concentrated within the south west portion of the site								

Table 2 – Summary of Field Observations

5. SITE GEOLOGY

The 1:100,000 scale Geological Series Map of the Penrith region indicates that the subject site is underlain by Bringelly Shale of the Wianamatta Group dating back to the Middle Triassic period and generally comprises *shale*, *carbonaceous claystone*, *claystone*, *laminate*, *fine to medium grained lithic sandstone*, *and rare coal / tuff*.

6. SITE HISTORY

In order to ascertain the site history, a limited documentary review of past and present land use at the subject site and the surrounding area has been undertaken as follows

6.1 Aerial Photographs:

A review of Historical Aerial Photographs was undertaken in order to provide a greater insight into the site history.

1961 – In 1961 the subject site was predominatly covered with vegetation(trees), however there appears to be a small house and some sheds at the north-west portion of the site facing Restwell Road. There appears to be a water body at the south-west portion of the site. The area surrounding the site appears to be predominately undeveloped. The approximate location of the subject site is highlighted in figure 2.

Figure 2 – Aerial Photograph from 1961

<u>1975</u> – In 1975, the house and structures have been demolished. The site has been cleared off trees and has been developed. A building (club building) is present on the central portion of the site. The water body at the south-west portion of the site is still present on site. The remainder of the site has been cleared and remain unsealed with sparse vegetation. There also appears to be a structure at the rear of the club building. The area surrounding the site appears to be predominately undeveloped. The subject site is highlighted in figure 3.

Figure 3 – Aerial Photograph from 1975

<u>1984</u> – In 1984 the water body(dam) at the south west corner of the site appear to be back filled. The area to the west of the property has been cleared off trees. Some houses have been constructed to the north and south of the property. The subject site is highlighted in figure 4.

<u>1994</u> – In 1994, there has been further development at the site. There are other structures that appear within the site. There also appears to be a building on the south east corner of the property where currently part of the carpark is located. The playing fields and courts also appear on site. Further residential development of land surrounding the site has occurred, since the 1987 aerial photograph was taken. The subject site is highlighted in figure 5.

Figure 5 – Aerial Photograph from 1994

6.2 Search of Contaminated Land Management Register (NSW EPA):

A summary of the search of the NSW EPA Contaminated Land Management record of notices for Bossley Park can be found in Appendix A. No notices have been issued to the subject site and no notices have been issued within the region.

6.3 Search of Protection of Environment Operations Public Register(POEO)

A search of the POEO public register of licensed and delicensed premises showed there are no premises within the Bossley Park area, see Appendix B.

7. POTENTIAL SOURCES OF CONTAMINATION

A search of the NSW EPA Contaminated Land Management record of notices revealed that there were no notices issued to the subject site. No history of dangerous manufacturing utilizing heavy chemicals or metals was observed. No history of heavy chemicals or metals storage was documented. No industrial facilities undertaking heavy manufacturing are located within 500m of the subject site. The surrounding sites are residential therefore, the risk of contamination migration caused by surface run-off from adjoining sites is minimal.

During the course of the site walk over, the morphology of the site indicated significant filling within the rear portion of the site mainly at the south-west portion of the site. No documentation pertaining to the source of this fill was provided.

From the aerial photographs it can be inferred that part of the fill was placed at the site some time between 1975 and 1984. The source of the fill material is unknown, and as such presents a contamination risk. Potential contamination exists in the form of heavy metals, petroleum hydrocarbons (TPH), polynuclear aromatic hydrocarbons (PAH) and asbestos.

8. SAMPLING AND ANALYSIS PLAN

8.1 Sampling Points

The sampling regime for this investigation was advised by the client. As part of this investigation, eleven (11) boreholes were drilled across the site (see Figure 6). Twenty four (24) discrete samples were recovered from within the fill for chemical analysis, eleven (11) composite samples were recovered from the fill for asbestos identification and eight (8) samples were recovered for salinity / aggressivity analysis from within the fill and natural soil profile.

8.2 Sampling Methodology

Each sample location was excavated using a solid flight auger drill rig. The sample was collected from the auger using a stainless steel trowel. The samples were placed in 250g laboratory prepared glass jars which were capped using Teflon-sealed screw caps and then placed in a chilled container. The samples were forwarded to Australian Laboratory Services Pty Ltd (ALS) for analysis along with a Chain of Custody which was subsequently returned to confirm the receipt of all samples.

8.3 Soil Profiles

Fieldwork was undertaken on 13th and 14th of September 2017 and comprised drilling 11 boreholes using a solid flight auger drill rig and a hand auger at locations shown on Figure 6. The profile of the boreholes are broadly summarised in table 3 and the full borehole logs are supplied within Appendix C. A summary of fill depth is presented in Table 4.

Figure 6- Location of Boreholes

(Note: This investigation is limited to the areas marked in yellow)

Table 3 - Borehole Profile

Profile	Depth
TOPSOIL; Silty Sand	Brown Silty SAND to depths of 0.1m
FILL; Silty Clay, yellow brown to red brown	Yellow brown to red brown Silty Clay at depths between 0.1m and 1.5≈2.0m and in two boreholes to depths of 3.0≈3.5m
FILL; Admixed Silty Sandy Clay, with gravels	Yellow brown, red brown to grey brown, Silty Sandy Clay with gravels at depths between 0.1m and 1.5~2.0m
NATURAL; Silty Clay	Red brown to grey brown, Silty Clay mostly from depths between 1.8≈3.5m
BEDROCK; Extremely Weathered Sandstone	Weathered shale slightly mottled brown in two boreholes(9 and 11) from depths 0.8m≈1.4m

Table 4 – Fill Depth											
Borehole	BH1	BH2	BH3	BH4	BH5	BH6	BH7	BH8	BH9	BH10	BH11
Depth of Fill	1.8m	3.5m	3.0m	3.5m	2.8m	2.5m	2.4m	0.8m+	1.4m	0.8m	1.2m+

8.4 Groundwater

No Groundwater was encountered during the course of the investigation.

9. BASIS FOR ASSESMENT CRITERIA

The source fill material is unknown, and as such presents a contamination risk. Potential contamination exists in the form of heavy metals, petroleum hydrocarbons (TPH), Polynuclear aromatic hydrocarbons (PAH), BTEX and asbestos.

The Assessment criteria used in this investigation have been obtained from the National Environment Protection (Assessment of Site Contamination) Measure (NEPM, 1999). This document presents risk-based Health Investigation Levels based on a variety of exposure settings for a number of organic and inorganic contaminants. As the details of any future development are unknown the results of the laboratory analysis are compared against all four of the Health Investigation Levels (HIL) for different exposure settings. The selected assessment criteria used in this assessment are summarized in table 5 below:

Chen	nicals and other attributes	Health Based Investigation Level (HIL'A') ₁	Health Based Investigation Level (HIL'B')2	Health Based Investigation Level (HIL'C') ₃	Health Based Investigation Level (HIL'D')₄
	Mercury	40	120	80	730
	Cadmium	20	150	90	900
	Lead	300	1200	600	1500
Heavy	Arsenic	100	500	300	3000
Metals	Chromium	100	500	300	3600
	Copper	6000	30000	17000	240000
	Nickel	400	1200	1200	6000
	Zinc	7400	60000	30000	400000
	Total PAH	300	400	300	4000
PAH	Carcinogenic PAH	3	4	3	40
	Benzo(a)pyrene	0.7	0.7	0.7	0.7
	Benzene	65	65	65	95
BTEX	Toluene	105	105	105	135
DILA	Ethyl-Benzene	125	125	125	185
	Xylenes	45	45	45	95
	TPH – C6-C10	800	800	800	800
ТРН	TPH – C10-C16	1000	1000	1000	1000
	TPH – C16-C34	3500	3500	3500	5000
	TPH – C34-C40	10000	10000	10000	10000

Table 5 -	Site A	ssessment	Criteria
Table J -	JIC F	1336331116111	CITCITA

1. HIL A: Residential A with garden/accessible soil also includes children's day care centres, preschools and primary schools.

2. HIL B: Residential B with minimal opportunities for soil access; includes dwellings with fully and permanently paved yard space such as high-rise buildings and apartments.

3.HIL C: Recreational C includes public open space such as parks, playgrounds, playing fields (e.g. ovals), secondary schools and unpaved footpaths.

4. HIL D: Commercial/industrial D includes premises such as shops, offices, factories and industrial sites.

10. LABORATORY TEST RESULTS – CHEMICAL CONTAMINATION

Test results obtained from ALS (Certificate Reference number ES1723266) are summarised in Table 6 with the above mentioned contaminant threshold values. The test values are highlighted in bold if they exceed the values obtained from the guidelines.

Contaminant of Concern	E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12	HIL (A) Threshold	HIL (B) Threshold	HIL (C) Threshold	HIL (D) Threshold
Mercury	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40	120	80	730
Cadmium	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	20	150	90	900
Lead	16	13	18	18	19	16	15	54	14	13	38	30	300	1200	600	1500
Arsenic	6	7	<5	9	9	15	6	9	11	<5	8	9	100	500	300	3000
Chromium	16	14	18	19	14	40	12	19	24	12	18	20	100	500	300	3600
Copper	24	24	34	25	23	65	21	34	8	24	28	28	6000	30000	17000	240000
Nickel	12	8	11	12	5	9	8	10	<2	9	10	16	400	1200	1200	6000
Zinc	46	36	71	50	36	60	37	2960	20	48	66	86	7400	60000	30000	400000
Total PAH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	300	400	300	4000
Carcinogenic PAH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3	4	3	40
Benzo(a)pyrene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	0.7	0.7	0.7
Benzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	65	65	65	95
Toluene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	105	105	105	135
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	125	125	125	185
Total Xylenes	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	45	45	45	95
C6 – C10 Fraction (sum)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	800	800	800	800
C10 - C16 Fraction (sum)	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1000	1000	1000	1000
C16 - C34 Fraction (sum)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	3500	3500	3500	5000
C34 - C40 Fraction (sum)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	10000	10000	10000	10000

 Table 6 Laboratory Test Results – Chemical Contamination

Contaminant of Concern	E13	E14	E15	E16	E17	E18	E19	E20	E21	E22	E23	E24	HIL (A) Threshold	HIL (B) Threshold	HIL (C) Threshold	HIL(D) Threshold
Mercury	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	40	120	80	730
Cadmium	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	<1	20	150	90	900
Lead	39	15	16	17	16	13	15	13	11	17	18	17	300	1200	600	1500
Arsenic	5	6	7	6	<5	<5	7	11	7	19	17	8	100	500	300	3000
Chromium	22	11	10	14	16	13	14	10	12	14	21	18	100	500	300	3600
Copper	31	20	26	21	40	36	14	25	31	37	26	27	6000	30000	17000	240000
Nickel	11	6	16	8	16	25	10	9	11	8	20	13	400	1200	1200	6000
Zinc	55	144	61	45	88	76	35	74	76	59	61	68	7400	60000	30000	400000
Total PAH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	300	400	300	4000
Carcinogenic PAH	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	3	4	3	40
Benzo(a)pyrene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.7	0.7	0.7	0.7
Benzene	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	65	65	65	95
Toluene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	105	105	105	135
Ethylbenzene	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	125	125	125	185
Total Xylenes	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	45	45	45	95
C6 – C10 Fraction (sum)	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	<10	800	800	800	800
C10 - C16 Fraction (sum)	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	1000	1000	1000	1000
C16 - C34 Fraction (sum)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	3500	3500	3500	5000
C34 - C40 Fraction (sum)	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	<100	10000	10000	10000	10000

10.1 Discussion of Laboratory Test Results

No suspicious odours or obvious signs of contamination were observed within the fill material. Twenty four (24) samples were submitted for chemical testing. The results of the laboratory testing are summarized below;

- The concentrations of all Heavy Metals were well below the exposure threshold values for all four of the Health Investigation Levels (HIL) exposure settings.
- The concentrations of all Polycyclic Aromatic Hydrocarbons(PAHs) were well below the exposure threshold values for all four of the Health Investigation Levels (HIL) exposure settings.
- The concentrations of all Petroleum Hydrocarbons were well below the exposure threshold values for all four of the Health Investigation Levels (HIL) exposure settings.
- The concentrations of all BTEX were well below the exposure threshold values for all four of the Health Investigation Levels (HIL) exposure settings.

11. SALINITY ASSESSMENT

The Department of Infrastructure and Planning (2002) Salinity Potential in Western Sydney map "Salinity Potential in Western Sydney 2002" indicates that the subject site is situated in a region with a moderate to high risk of saline soils. The moderate classification is attributed to scattered areas of scalding and vegetation indicators in areas where the concentrations have not been mapped. There is the possibility of encountering saline areas which were not identified due to localised factors. Saline soils could occur within areas of lower slopes and drainage systems where water accumulation is high or where movement of water through the soil profile is low.

Eight (8) preliminary screening tests were collected as a part of this assessment in order to gain a limited view on the risk of saline soils. This assessments is based on the booklet "Site Investigations for Urban Salinity" published by Department of Land and Water Conservation 2002. Laboratory analysis was completed by Australian Laboratory Services (ALS) Pty Ltd, a NATA accredited laboratory. See appendix D for laboratory test results.

12. LABORATORY TEST RESULTS - SALINITY

Test results obtained from ALS (Certificate Reference number ES1723266) are summarised in Tables 7 & 8.

Table 7 : Analysis of the Soil Samples (Salinity)											
Sample	Depth (m)	EC µS/cm	Texture Factor	ECe	Salinity Class						
S1	0.50	0.104	10	1.04	NS						
S2	1.50	0.474	10	4.74	MS						
S3	2.50	0.484	10	4.84	MS						
S4	0.50	0.502	7	3.51	SS						
S5	1.50	0.458	7	3.21	SS						
S6	0.50	0.212	10	2.12	SS						
S7	1.50	0.256	14	3.58	SS						
S8	2.00	0.226	14	3.16	SS						
Abbreviatio	ons:										
NS	Not Saline)									
SS	Slightly Sa	Slightly Saline									
MS	Moderate										
VS	Very Salin	е									

Table 7 : Analysis of the Soil Samples (Salinity)

Table 8 - Analysis of the Soil Samples (Aggressiveness)

Sample	Depth	рН	Chloride	Sulphate	Resistivity	Aggressivity	Aggressivity				
	(m)	pH Units	mg/kg	mg/kg	Ohm.cm	to Concrete	to Steel				
S1	0.50	8.2	40	40	9620	Not Agg	Not Agg				
S2	1.50	8.6	230	370	2110	Not Agg	Not Agg				
S3	2.50	8.3	730	100	2070	Not Agg	Not Agg				
S4	0.50	6.2	540	460	1990	Not Agg	Not Agg				
S5	1.50	6.1	550	360	2180	Not Agg	Not Agg				
S6	0.50	5.8	170	180	4720	Not Agg	Not Agg				
S7	1.50	6.0	220	140	3910	Not Agg	Not Agg				
S8	2.00	9.0	70	110	4420	Not Agg	Not Agg				
Abbreviation	าร:										
Not Agg	Non-Agg	ressive									
Mild	Mildly Aggressive										
Mod	Moderate	Moderately Aggressive									

From the results presented in Table 7, the electrical conductivity results indicate that the soil salinity is predominately non saline to slightly saline, with the exception of two samples which were moderately saline. However, the moderately saline test results were at the lower end of the classification threshold.

Table 8 provides the test results for the aggressiveness of the soil samples. The pH, resistivity, chloride and sulphate concentrations in the soil samples are compared with the Australian Standard *2159:2009 Piling – Design and Installation*. The laboratory test values of sulphates, chlorides and pH indicate that the soil samples are not aggressive to both steel and concrete.

13. LABORATORY TEST RESULTS – ASBESTOS

Eleven samples of the fill material were recovered and sent for laboratory analysis of asbestos identification, with one sample composited from each borehole location. Test results obtained from ALS (Certificate Reference number ES1723266) are summarised in Table 8.

Table 9- Laboratory Test Results for Asbestos Identification										
Sample No.	Borehole	Depth (Composite samples)	Material	Asbestos Identification						
AS1	BH1	0.100-2.10m	Fill	NIL						
AS2	BH2	0.100-3.50m	Fill	NIL						
AS3	BH3	0.100-3.50m	Fill	NIL						
AS4	BH4	0.100-3.50m	Fill	NIL						
AS5	BH5	0.150-3.50m	Fill	NIL						
AS6	BH6	0.025-2.50m	Fill	Yes-(Chrysotile)						
AS7	BH7	0.000-3.00m	Fill	NIL						
AS8	BH8	0.100-0.800m	Fill	NIL						
AS9	BH9	0.150-2.00m	Fill	NIL						
AS10	BH10	0.129-1.20m	Fill	NIL						
AS11	BH11	0.100-1.40m	Fill	NIL						

13.1 Discussion of Laboratory Test Results

Eleven samples of the fill material were recovered and sent for laboratory analyses. The results of the laboratory testing indicate that a small piece of cement sheeting that was recovered from borehole 5 at the time of the site investigation is identified as asbestos chrysotile cement sheeting (approximately 20 x18 x 7mm). However there was no other signs of bonded asbestos or asbestos fibres within any of the other boreholes.

14. LABORATORY QUALITY ASSESSMENT AND QUALITY CONTROL

14.1 Laboratory Accreditation

Australian Laboratory Services (ALS) are accredited by the National Association of Testing Authorities (NATA) for the analyses carried out and are also accredited for compliance with ISO/IEC 17025.

14.2 Laboratory Duplicate Results

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. Laboratory Duplicates were within the recovery limits, see certificates in Appendix D.

14.3 Laboratory Blanks

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. All blanks were reported at Limits of Recovery (LOR), see certificates in Appendix D.

14.4 Laboratory Control Spikes

The quality control term Laboratory Control Spike (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Laboratory Control Spikes were within the recovery limits, see certificates in Appendix D.

14.5 Laboratory Matrix Spikes

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Matrix Spikes were within the recovery limits, see certificates in Appendix D.

15. CONCLUSIONS AND RECOMMENDATIONS

The conclusions of this preliminary contamination report are as follows:

- A review of aerial photography suggests that the neighbouring properties are residential and not considered to have posed a risk for potential contamination to the site.
- A search of the NSW EPA Contaminated Land Management record of notices revealed that there were no notices issued to the subject site. No history of dangerous manufacturing utilizing heavy chemicals or metals was documented.
- Significant filling was observed predominantly at the south-west portion of the site. The source of this fill material is unknown.
- Eleven borehole and sampling locations were requested to be investigated as a part of this investigation in order to determine the quality of the subsurface soil material.
- Twenty four (24) samples were submitted for chemical analysis. The concentrations of all Heavy Metals, PAHs, Petroleum Hydrocarbons and BTEX were well below the Health Investigation Levels (HIL) for all four different exposure settings.
- Eight (8) samples were submitted for salinity analysis. The electrical conductivity results indicate that the soil salinity is predominately non saline to slightly saline, with the exception of two samples which were moderately saline.
- Eight (8) samples were submitted for aggressivity analysis. The laboratory test values of sulphates, chlorides and pH indicate that the soil samples are not aggressive to both steel and concrete.
- One (1) small piece of cement sheeting was recovered from borehole 5 at the time of the site investigation and was identified by laboratory analysis as a piece of asbestos chrysotile cement sheeting (approximately 20 x18 x 7mm). No other signs of bonded asbestos or asbestos fibres were observe during the field investigation. No asbestos was identified by laboratory analysis within the recovered laboratory samples from the remaining boreholes (BH1-4, BH6-11).

The above report is only a primary contamination and salinity investigation (factual investigation) assessment which comprises a brief desktop study and sub-surface investigation of the fill material at eleven boreholes within the site as advised by the client. The initial results indicate that there is a low risk of widespread contamination across the site, as chemical levels in all samples were below the Health Investigation Levels (HIL) for all four different exposure settings. One potenetial asbestos contamination hot spot was observed at the location of borehole BH5. Hence It is recommended that an additional assessment (detailed investigation) be undertaken at the time of proposed development works to further determine the full nature, location and likely distribution of any contamination of the fill material within the subject site.

It is understood that the north-western portion of the site, currently covered by a car park, is to potentially be redevelopped for Independent Unit Living. Based upon the results of this preliminary study, the site would be low risk of presenting a contamination risk, especially if the development was to comprise an apartment style development with limited site access to soils (HIL B assessment criteria).

16. LIMITATIONS

It is possible that contaminated soils and differing ground conditions may be present between sampling locations, or in the remainder of the site not intrusively investigated. If the materials or conditions encountered are other than those that have been described, Ground Technologies should be notified immediately as further assessment will be required.

The scope and the period of Ground Technologies services are described in the report and are subject to restrictions and limitations. Ground Technologies did not perform a complete assessment of all possible conditions or circumstances that may exist at the site. If a service is not expressly indicated, do not assume it has been provided. If a matter is not addressed, do not assume that any determination has been made by Ground Technologies in regards to it.

Where data has been supplied by the client or a third party, it is assumed that the information is correct unless otherwise stated. No responsibility is accepted by Ground Technologies for incomplete or inaccurate data supplied by others.

Any drawings or figures presented in this report should be considered only as pictorial evidence of our work. Therefore, unless otherwise stated, any dimensions should not be used for accurate calculations or dimensioning.

This document is COPYRIGHT- all rights reserved. No part of this document may be reproduced or copied in any form or by means without written permission by Ground Technologies Pty Ltd. All other property in this submission shall not pass until all fees for preparation have been settled. This submission is for the use only of the party to whom it is addressed and for no other purpose. No responsibility is accepted to any third party who may use or rely on the whole or any part of the content of this submission. No responsibility will be taken for this report if it is altered in any way, or not reproduced in full. This document remains the property of Ground Technologies Pty Ltd until all fees and monies have been paid in full.

17. REFERENCES:

Geological Series Sheet 9130 (EDITION 1) 1983, Map of the Sydney region, scale 1:100,000

- Contaminated Sites Guidelines for Consultants Reporting on Contaminated Sites. NSW Environment Protection Authority (EPA) 2000.
- Managing Land Contamination: Planning Guidelines SEPP55 Remediation of Land Department of Urban Affairs and Planning and Environment Protection Authority (DUAP and EPA) 1998.
- National Environment Protection (Assessment of Site Contamination) Measure National Environmental Protection Council 1999.

APPENDIX A

SEARCH RESULTS OF EPA CONTAMINATED LAND REGISTER

Healthy Environment, Healthy Community, Healthy Business

Home Contaminated land Record of notices

Search results

Your search for:Suburb: BOSSLEY PARK

did not find any records in our database.

If a site does not appear on the record it may still be affected by contamination. For example:

- Contamination may be present but the site has not been regulated by the EPA under the Contaminated Land Management Act 1997 or the Environmentally Hazardous Chemicals Act 1985.
- The EPA may be regulating contamination at the site through a licence review all sites or notice under the Protection of the Environment Operations Act 1997 (POEO Act).
 Contamination at the site may be being managed under the planning more search tips
- Contamination at the site may be being managed under the <u>planning</u> process.

More information about particular sites may be available from:

- The <u>POEO public register</u>
- The appropriate planning authority: for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act.

See What's in the record and What's not in the record.

If you want to know whether a specific site has been the subject of notices issued by the EPA under the CLM Act, we suggest that you search by Local Government Area only and carefully review the sites that are listed.

This public record provides information about sites regulated by the EPA under the Contaminated Land Management Act 1997, including sites currently and previously regulated under the Environmentally Hazardous Chemicals Act 1985. Your inquiry using the above search criteria has not matched any record of current or former regulation. You should consider searching again using different criteria. The fact that a site does not appear on the record does not necessarily mean that it is not affected by contamination. The site may have been notified to the EPA but not yet assessed, or contamination may be present but the site is not yet being regulated by the EPA. Further information about particular sites may be available from the appropriate planning authority, for example, on a planning certificate issued by the local council under section 149 of the Environmental Planning and Assessment Act. In addition the EPA may be regulating contamination at the site through a licence under the Protection of the Environment Operations Act 1997. You may wish to search the POEO public register.<u>POEO public register</u>

9 October 2017

Search Again Refine Search

Search TIP

To search for a specific site, search by LGA (local government area) and carefully review all sites listed.

Connect

We

Fee

APPENDIX B

SEARCH OF POEO REGISTER OF LICENSED AND DELICENSED PREMISES

Healthy Environment, Healthy Community, Healthy Business

<u>Home</u> > <u>Environment protection licences</u> > <u>POEO Public Register</u> > <u>Search for licences, applications and notices</u>

Search results

Your search for: General Search with the following criteria

Suburb - BOSSLEY PARK

returned 0 result

Search Again

Connect

Feedback

Contact

Government

NSW Government jobs.nsw About

Accessibility Disclaimer Privacy Copyright

Web support Public consultation

Contact us Offices Report pollution APPENDIX C

BOREHOLE LOGS

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

Ground Technologies Pty Ltd ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

۱

Geotechnical Testing Services

Ground Technologies Pty Ltd ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

Ground Technologies Pty Ltd ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 **Ph: (02) 8783 8200 Fax: (02) 8783 8210** Email: lab@groundtech.com.au

SITE LOCATION: Club Marconi, Bossley Park					
Borehole NO. 5					
WATER	DEPTH (m)	SOIL DESCRIPTION (SOIL TYPE, COLOUR, MOISTURE, CONSISTENCY)	GRAPHIC LOG	SAMPLES	REMARKS
Ν		Silty SAND, brown, dry to slightly moist			TOPSOIL
L	0.5 -	Admixed Silty Sandy CLAY, yellow-brown, grey brown with some small gravels damp to slightly moist			FILL
				S1 0.5m E14 1.0m	AS5 Composite sample 1.5-3.5m
	1 -			1.011	1.5-3.5M
	1.5 -	slightly moist to moist		S2 1.5m E15 2.0m	
	2 -	Admixed Silty Shaley CLAY, grey brown organge brown, slightly moist			
	2.5			S3 2.50 m	
	3 -	Silty Clay (Alluvial), pale grey, brown, moist to very moist		E16 2.8m	Natural
	3.5	Borehole terminated at 3.5m			
Method: 4WD Mounted Rig/Solid FlightSpiral Augers Date of Drilling: 14/9/2017 Logged and Drilled by: JG/SM					

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

ABN 25 089 213 294 PO Box 1121 Green Valley NSW 2168 Ph: (02) 8783 8200 Fax: (02) 8783 8210 Email: lab@groundtech.com.au

APPENDIX D

LABORATORY RESULTS
ETAULTOTION	LiBRISDANE 32 Shared Street Suffred OLD 403 LiBRISDANE 32 Shared Street Suffred Sufficiency Hot 07 243 7222 E samples broads model LICLAUS 100-64 Distance totals how Control Ph 07 7471 9500 E, gladostore@gladostocic.com	LIBRISBANE 22 Shand Sheet Shaferd OLD 4003 PH 07 2247 2222 E samples break-re@asglobal com ucleAdSITORE fot Grain romab Orac Control OLD 4680 Ph 07 7471 5600 E. gladston@bilaglubar com	LIMELLIOURNE 2.4 Wester Rossi Springvas VIC 9171 Pr. 93.8549.8000 E. samples include inte@elsglebal.com LIMUDCHE 27. Sydney Roset Mangae NSW 2850 Ph. 92.6372.6735 E. Inudgee mvl@asgleba com	ENOVER 413 Geav Pase kight Nove NSV 2241 Ph 62423-2055 Env.2049sglove com LIPERTH to hard Vaw Meage VA 6900 Ph. te 9209 2055 E sample pentidjalogdel.com	W 2241 DTC/WNSVILLE 14 15 Desma Court Bohre OLD 4418 DFD for 4786 REDIE : twoeweile environmenta@Belg on a com DWOILLONGOILO & Benny Strate Wolling on NSW 2500 Ph 02 4225 5125 E DetteembelgelayDotal con Ph 02 4225 5125 E DetteembelgelayDotal con
CLIENT: Ground Technologies	TUR	TURNAROUND REQUIREMENTS :	Standard TAT (List due date):		FOR LABORATO
.	(Stan)	(Standard TAT may be longer for some fests e.g Uttra Trace Organics)	Non Standard or urgent TAT (List d	ue date);	Custory Seal India.
	ALS	ALS QUOTE NO.:	554/14	COC SEQUENCE NUMBER (Circle)	uodir jueseud si
ORDER NUMBER:				COC: 1 2 3 4 5 6	7 Random Sample Temperature on Receipt
PROJECT MANAGER: Anthony Bennett	CONTACT PH: 0414 805 603	14 805 603		0F 1 1 2 3 4 5 5	
SAMPLER: Jasmine George and Shahezad Malik	SAMPLER MOBILE:0430462394	E:0430462394		RECEIVED BY:	RELINQUISHED BY: RECEIVED BY:
COC emailed to ALS? (NO)	EDD FORMAT (or default):	default):	A.Bennett JG & SM	Maria	1
Email Reports to: anthony@groundtech.com.au, malik@groundtech.com.au,jasmine@groundtech.com.au	oundtech.com.au,jasmine@g	roundtech.com.au	DATE/TIME:	DATED ME:	
Email Invoice to (will default to PM if no other addresses are listed): lab@groundtech.com.au	re listed): lab@groundtech.co	m.au	15.09.17	15-0-13 15:15	Work Order Reference
COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	SAL:				ES1723266
ALS USE MATRIX SOLID (S) WATER (M)		CONTAINER INFORMATION	ANALYSI Where Meta	S REQUIRED including SUITES (NB. Suite Codes must be listed its are required, specify Total (unfiltered bottle required) or Dissoi required).	
LAB ID SAMPLE ID	DATE / TIME MATRIX	TYPE & PRESERVATIVE to codes below)	TOTAL DNTAINERS	lates&Chloride tivity	
			S26		Telephone : + 61-2-8784 8555
	14/9/HEXX S				
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1/9/15		<		28
	6/9/15-				1 768 P
5 65	14/9/15		x x x		1ab / Statistical and a statistical and
200	14/9/15			(Irgan	
20-1	10/9/12				
	516171		x		Connoic / Courier:
	14/9/17			WON	
	1/1/17			Attach	Attach by FO/ Internal Succuments
	71/0/17				
15 17 21	4/9/17				
	21/6141		/ / × ×		Spoke with Shahezad malix
	219/17		/ × ×		requires standard
12					FL-1-21 (2010/11)
pit loc					
n E22			X X 1 /	•	
$\frac{1}{12}$					

CHAIN OF CUSTODY CUSTODY ALS Laboratory please for +	Ph. Dis 8,350 Dis 2,315 Junna Read Montest SA. 5025 Ph. Dis 8,359 Disbergi & autoansista adaptication UHRIESEANE-32 Shanno Sheet Shafford 5UD 4053 Ph. 07 24/17222 E: sumplex binsbane@Bislighous.com UKLADSTOT-64 Calleroncest. Dime Christon 1UJ 4680 Pk. 07 74/1 SR00 E: gladokton@Bislighoned.com	May SA (SES) UmALCA-Y, 27 National readowski (U. 2 × rul) otadi com Ph. 07.4440 (171; emetang@asgloba.com otad 2010 4053 Ph. 07.4440 (171; emetang@asgloba.com or d 2110 4053 Ph. 07.4440 (171; emetang@asgloba.com ph. 07.4440 (171; emetang@asgloba.com Ph. 07.6272 (Sprine); emetang@asgloba.com ph. 07.4440 (171; emetang@asgloba.com Ph. 07.6272 (Sprine); emetang@asgloba.com ph. 02.6372 6755 E. m. udgew in al@asgloba.com Ph. 02.6372 6755 E. m. udgew in al@asgloba.com	igbesjon (J. 4740) sgbesjoen de Spriggvae VIC 3171 rgee NSW 2650 rgee NSW 2650	LIMEWORSHIE Since Sun Read Watabook (SW22004) Ph: (2 4098 0432 is sampter Provailing@acplobal.com LINDWPA.41:3 (CSL): round@asgebiblicam Ph: (24433 (CSL): round@asgebiblicam LIPERF1:11 https://www.wasge.WAG000 Ph: (09 42018 7655 b); samptes path@asg.obal.com	2304 Jan	Exercise 7: 277-289 Woodpark Road Smithlein NSW27 Mar- P. 272 F264 EEG5 E samples sydney@elspibela.com U1 OVMN2VLLE: 4 15: Desine Currit Bahre OLL: 4818 P. 37 4728 BR00 E texenser-is encommenta@elspibela.com DWOLLONCOLOG-89 Kenny Street Wolfongang NSW 2500 Ph 10: 4725 3725 E politeinite@elspibela.com
CLIENT: Ground Technologies	TURNAROUNI	TURNAROUND REQUIREMENTS : Standard TAT (ist due date):		FOR LABORATO	DNLY (Circle)
.	(Standard TAT me	(Standard TAT may be longer for some tests e.g. Non Standard or urgent TAT (List d	urgent TAT (List due date):		Custody Seal Intaci?	Via No. V
PROJECT: GTE1355 (Bosley Park)	ALS QUOTE NO.:	O.: SY/564/14		COC SEQUENCE NUMBER	(Circle) Ener ice / Trozen (ce bricke prese	nuon na SO
ORDER NUMBER:			coc	1 2 3 4 5	6 7 Random Sancia Singa Sir Receiv	
PROJECT MANAGER: Anthony Bennett	CONTACT PH: 0414 805 603		OF:	-1 2 3 4 5	6 7 Other comment	10×1
SAMPLER: Jasmine George and Shahezad Malik	SAMPLER MOBILE:0430462394	394 RELINQUISHED BY:	REC	RECEIVED BY:	RELINQUISHED BY:	RECEIVED BY:
COC emailed to ALS? (NO)	EDD FORMAT (or defauit):	ABennett JG	Sr	Warred		
Email Reports to: anthony@groundtech.com.au, malik@groundtech.com.au.jasmine@groundtech.com.au	groundtech.com.au.jasmine@groundtech.	DATE/TIME:		DATERIME	DATE/TIME:	DATE/TIME:
Email Invoice to (will default to PM if no other addresses are listed); lab@groundtech.com.au	s are listed): lab@groundtech.com.au	F115021		15-9-17 15-15		
COMMENTS/SPECIAL HANDLING/STORAGE OR DISPOSAL:	POSAL:					
ALS MATER MATER MATER MA	MIS	CONTAINER INFORMATION	ANALYSIS REQUIR	ED Including SUITES (NB. Sulte uired, specify Total (unfiltered bott required).	ANALYSIS REQUIRED Including SUITES (NB. Suite Codes must be listed to attract suite price) Where Metals are required, specify Total (unfiltered bottle required) or Dissolved (field filtered bottle required).	Additional Information
LAB ID SAMPLE ID	DATE / TIME MATRIX	rype & PRESERVATIVE (refer to codes below) (refer TOTAL CONTAINERS	S26 pH&EC	Sulphates&Chloride s Resistivity	Asbestos	Comments on likely contaminant levels, dilutions, or samples requiring specific QC analysis etc.
24 624	5 41 60151			•		
	1 60141	-		× X		
		- a	< < 7			
12 64		· ·	× 7	<>		
			*	×		
			×	X		
65 <u>16</u>			×	,Х .Х		
- 			×	X		
					~	
X AS3					×``	
HSH HSH	¢					
	C122121				× >	
	ווו				×`	
40 ASS		-				
	i			,		
MS IN INST	F.					
加速 机酸化物 机合金属的 子子的 机力 人名马克尔 一下,可能能给她的这个人都没有好的,不能是有什么的。" 计可能的 网络神经的 化化合金 化合金合金		TOTAL				

and a second second

CERTIFICATE OF ANALYSIS

Work Order	ES1723266	Page	: 1 of 22
Client	GROUND TECHNOLOGIES	Laboratory	Environmental Division Sydney
Contact	: MR ANTHONY BENNETT	Contact	: Customer Services ES
Address	: 16 Weld Street	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	PRESTONS NSW, AUSTRALIA 2170		
Telephone	: +61 02 8783 8200	Telephone	: +61-2-8784 8555
Project	: GTE1355 (BOSLEY PARK)	Date Samples Received	: 15-Sep-2017 15:15
Order number	:	Date Analysis Commenced	: 18-Sep-2017
C-O-C number	:	Issue Date	: 25-Sep-2017 15:28
Sampler	: JASMINE GEORGE AND SHAHEZAD MALIK		IC-MRA NATA
Site	:		
Quote number	: SYBQ/270/16		Accreditation No. 825
No. of samples received	: 43		Accredited for compliance with
No. of samples analysed	: 43		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW
Ankit Joshi	Inorganic Chemist	Sydney Inorganics, Smithfield, NSW
Christopher Owler	Team Leader - Asbestos	Newcastle - Asbestos, Mayfield West, NSW
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW
Rassem Ayoubi	Senior Organic Chemist	Sydney Organics, Smithfield, NSW
Raymond Commodore	Instrument Chemist	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: Negative results for vinyl tiles should be confirmed by an independent analytical technique.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.

Page : 3 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E1	E2	E3	E4	E5
	Cl	ient sampli	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-001	ES1723266-002	ES1723266-003	ES1723266-004	ES1723266-005
				Result	Result	Result	Result	Result
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	8.1	7.7	7.5	8.3	7.6
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	119	246	78	391	359
EA055: Moisture Content (Dried @	າ 105-110°C)							
Moisture Content		1.0	%	12.9	13.1	12.3	15.6	18.3
		-						
EG005T: Total Metals by ICP-AES Arsenic	7440-38-2	5	mg/kg	6	7	<5	9	9
Cadmium	7440-38-2	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9	2	mg/kg	16	14	18	19	14
Copper	7440-47-3	5	mg/kg	24	24	34	25	23
Lead	7440-50-8	5	mg/kg	16	13	18	18	19
Nickel	7439-92-1	2	mg/kg	12	8	11	10	5
Zinc	7440-02-0	5	mg/kg	46	36	71	50	36
		5	ilig/kg	+0	50		50	
EG035T: Total Recoverable Merc		0.4		-0.4	-0.1	-0.4	10.4	10.1
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP075(SIM)B: Polynuclear Aroma								
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydroca	arbons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
[^] Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 4 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E1	E2	E3	E4	E5
	Cli	ient samplii	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-001	ES1723266-002	ES1723266-003	ES1723266-004	ES1723266-005
compound	one number		-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic H	vdrocarbons - Cont	inued		1 COUR	Rooun	rtoourt	1 COUR	recourt
A Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarb			00					
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbone NEDM 201							
C6 - C10 Fraction	C6 C10	10	mg/kg	<10	<10	<10	<10	<10
^ C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)	CO_CIO-BIEX	10	inging	10				
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Su	rrogates							
Phenol-d6	13127-88-3	0.5	%	91.6	89.3	90.5	95.7	89.3
2-Chlorophenol-D4	93951-73-6	0.5	%	97.8	94.9	96.2	102	94.9
2.4.6-Tribromophenol	118-79-6	0.5	%	90.3	84.0	91.8	89.6	89.6
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	95.2	92.2	93.7	98.1	91.4
Anthracene-d10	1719-06-8	0.5	%	109	107	108	103	104

Page	5 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	; GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E1	E2	E3	E4	E5
	Cli	ient sampli	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-001	ES1723266-002	ES1723266-003	ES1723266-004	ES1723266-005
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued	I							
4-Terphenyl-d14	1718-51-0	0.5	%	85.4	84.4	85.9	90.8	82.9
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	92.7	96.4	98.3	99.2	89.8
Toluene-D8	2037-26-5	0.2	%	82.3	87.3	91.8	106	85.3
4-Bromofluorobenzene	460-00-4	0.2	%	91.2	93.9	97.1	97.2	92.9

Page : 6 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E6	E7	E8	E9	E10
	Cli	ient sampli	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-006	ES1723266-007	ES1723266-008	ES1723266-009	ES1723266-010
				Result	Result	Result	Result	Result
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	7.6	7.3	7.6	7.0	8.0
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	365	96	524	588	105
EA055: Moisture Content (Dried	@ 105-110°C)							
Moisture Content		1.0	%	16.4	8.8	15.5	15.3	14.4
EG005T: Total Metals by ICP-AE								
Arsenic	7440-38-2	5	mg/kg	15	6	9	11	<5
Cadmium	7440-38-2	1	mg/kg	<1	<1	4	<1	<1
Chromium	7440-43-9	2	mg/kg	40	12	19	24	12
Copper	7440-47-3	5	mg/kg	65	21	34	8	24
Lead	7439-92-1	5	mg/kg	16	15	54	14	13
Nickel	7439-92-1	2	mg/kg	9	8	10	<2	9
Zinc	7440-66-6	5	mg/kg	60	37	2960	20	48
-		-						
EG035T: Total Recoverable Mer Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
-		0.1	mg/kg	-0.1		-0.1	-0.1	-0.1
EP075(SIM)B: Polynuclear Arom Naphthalene		0.5	ma/ka	<0.5	<0.5	<0.5	<0.5	<0.5
•	91-20-3	0.5	mg/kg mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene Acenaphthene	208-96-8	0.5		<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
	86-73-7		mg/kg				<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7		mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5 0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene Barra (a) and the second	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3		mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg					
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	. 191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydro		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 7 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E6	E7	E8	E9	E10
	Cl	ient samplii	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-006	ES1723266-007	ES1723266-008	ES1723266-009	ES1723266-010
compound	CAS Number	LOIN		Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drooorbono Cont	inuad		Result	Tresuit	resuit	Result	Result
POTS(SIM)B: POTYNUCIEAR AROMALIC Hy Benzo(a)pyrene TEQ (half LOR)	drocarbons - Cont	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
 [^] Benzo(a)pyrene TEQ (LOR) 		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
		0.0	mg/ng		1.2	1.2	1.6	1.2
EP080/071: Total Petroleum Hydrocarb C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
		50		<50	<50	<50	<50	<50
C10 - C14 Fraction C15 - C28 Fraction			mg/kg	<100	<100	<100	<100	<100
		100	mg/kg			<100		<100
C29 - C36 Fraction		100 50	mg/kg	<100	<100 <50	<50	<100	<100
C10 - C36 Fraction (sum)			mg/kg	<0U	VC>	<00	<00	<00
EP080/071: Total Recoverable Hydroca								
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
`Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Sur	rogates							
Phenol-d6	13127-88-3	0.5	%	89.9	86.3	92.0	89.2	86.9
2-Chlorophenol-D4	93951-73-6	0.5	%	95.3	90.7	97.0	94.0	91.3
2.4.6-Tribromophenol	118-79-6	0.5	%	101	85.9	93.3	86.4	85.7
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	91.7	88.5	93.9	91.1	89.2
Anthracene-d10	1719-06-8	0.5	%	106	102	107	103	103

Page	: 8 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	; GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E6	E7	E8	E9	E10
	Cli	ient sampli	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-006	ES1723266-007	ES1723266-008	ES1723266-009	ES1723266-010
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued	t							
4-Terphenyl-d14	1718-51-0	0.5	%	84.5	81.3	86.0	83.9	82.1
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	96.8	83.6	94.4	89.4	103
Toluene-D8	2037-26-5	0.2	%	99.8	96.7	87.0	83.6	78.0
4-Bromofluorobenzene	460-00-4	0.2	%	93.4	73.4	83.3	85.1	85.9

Page : 9 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	E11	E12	E13	E14	E15
	Cl	ient samplii	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-011	ES1723266-012	ES1723266-013	ES1723266-014	ES1723266-015
				Result	Result	Result	Result	Result
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	8.6	8.5	7.4	6.4	8.9
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	641	507	428	812	437
EA055: Moisture Content (Dried @	າ 105-110°C)							
Moisture Content		1.0	%	14.4	12.8	19.6	14.1	12.3
EG005T: Total Metals by ICP-AES Arsenic	7440-38-2	5	mg/kg	8	9	5	6	7
Cadmium	7440-38-2	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9	2	mg/kg	18	20	22	11	10
Copper	7440-47-3	5	mg/kg	28	28	31	20	26
Lead	7439-92-1	5	mg/kg	38	30	39	15	16
Nickel	7439-92-1	2	mg/kg	10	16	11	6	16
Zinc	7440-02-0	5	mg/kg	66	86	55	144	61
		5	ilig/kg	00	00		144	01
EG035T: Total Recoverable Merc		0.1		-0.4	-0.1	-0.4	<0.1	<0.1
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP075(SIM)B: Polynuclear Aroma								
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydroca	arbons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
∖ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 10 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E11	E12	E13	E14	E15
	Cl	ient samplii	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-011	ES1723266-012	ES1723266-013	ES1723266-014	ES1723266-015
compound	CAS Number		-	Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy	drocarbone Cont	inuad		Result	rtcouit	1 Court	Result	rtcourt
[^] Benzo(a)pyrene TEQ (half LOR)	urocarbons - com	0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
		0.0						
EP080/071: Total Petroleum Hydrocarb C6 - C9 Fraction	ons 	10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100		<100	<100	<100	<100	<100
^ C10 - C36 Fraction (sum)		50	mg/kg mg/kg	<50	<50	<50	<50	<50
· · · · ·				~JU	-50	-50	-50	-50
EP080/071: Total Recoverable Hydroca				<10	<10	<10	<10	<10
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)		50		<50	<50	-50	<50	<50
>C10 - C16 Fraction		50	mg/kg	<100	<100	<50 <100		<50
>C16 - C34 Fraction		100	mg/kg				<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
^ Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Sur	rogates							
Phenol-d6	13127-88-3	0.5	%	87.7	88.3	87.0	88.9	86.2
2-Chlorophenol-D4	93951-73-6	0.5	%	92.9	93.4	92.0	94.2	91.4
2.4.6-Tribromophenol	118-79-6	0.5	%	94.5	91.3	92.0	87.2	86.8
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	90.5	91.0	89.4	91.4	89.7
Anthracene-d10	1719-06-8	0.5	%	103	105	103	105	103

Page	: 11 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	: GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E11	E12	E13	E14	E15
	Cli	ent sampli	ng date / time	14-Sep-2017 00:00				
Compound	CAS Number	LOR	Unit	ES1723266-011	ES1723266-012	ES1723266-013	ES1723266-014	ES1723266-015
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued								
4-Terphenyl-d14	1718-51-0	0.5	%	83.2	83.6	82.7	84.0	82.7
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	93.1	86.4	103	93.9	90.9
Toluene-D8	2037-26-5	0.2	%	83.1	79.3	75.6	84.5	83.0
4-Bromofluorobenzene	460-00-4	0.2	%	79.0	83.8	83.8	84.5	77.8

Page : 12 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

ub-Matrix: SOIL Matrix: SOIL)		Clie	ent sample ID	E16	E17	E18	E19	E20
	Cli	ient samplii	ng date / time	14-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-016	ES1723266-017	ES1723266-018	ES1723266-019	ES1723266-020
			-	Result	Result	Result	Result	Result
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	8.5	7.3	7.6	6.8	5.4
EA010: Conductivity			·					
Electrical Conductivity @ 25°C		1	µS/cm	258	651	332	377	741
EA055: Moisture Content (Dried @								
Moisture Content		1.0	%	14.6	15.9	11.0	7.8	10.3
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		10.0	11.0		10.0
EG005T: Total Metals by ICP-AES Arsenic	7440-38-2	5	mg/kg	6	<5	<5	7	11
Cadmium	7440-38-2	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-43-9 7440-47-3	2	mg/kg	14	16	13	14	10
		2	mg/kg	21	40	36	14	25
Copper Lead	7440-50-8	5		17	16	13	14	13
	7439-92-1		mg/kg					
Nickel	7440-02-0	2	mg/kg	8	16	25	10	9
Zinc	7440-66-6	5	mg/kg	45	88	76	35	74
EG035T: Total Recoverable Mercu								
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
EP075(SIM)B: Polynuclear Aromat	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydroca		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page : 13 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E16	E17	E18	E19	E20
	Cl	ient samoli	ng date / time	14-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-016	ES1723266-017	ES1723266-018	ES1723266-019	ES1723266-020
Compound	CAS Number	LOIN		Result	Result	Result	Result	Result
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromatic Hy Benzo(a)pyrene TEQ (half LOR)	drocarbons - Cont	0.5	ma/ka	0.6	0.6	0.6	0.6	0.6
 [^] Benzo(a)pyrene TEQ (LOR) 		0.5	mg/kg mg/kg	1.2	1.2	1.2	1.2	1.2
		0.5	ilig/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrocarb		10		-10	- 110		-10	-10
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
[^] C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
(F1)								
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
^ Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
EP075(SIM)S: Phenolic Compound Sur								
Phenol-d6	13127-88-3	0.5	%	87.0	86.1	90.6	89.0	88.3
2-Chlorophenol-D4	93951-73-6	0.5	%	92.1	91.3	95.8	93.9	93.7
2.4.6-Tribromophenol	118-79-6	0.5	%	93.3	90.0	93.6	91.0	88.2
•	110-79-0	0.0	70		30.0	33.0	51.0	00.2
EP075(SIM)T: PAH Surrogates		0.5	0/	00.4	00.0	00.7	00.5	01.1
2-Fluorobiphenyl	321-60-8	0.5	%	90.1	89.2	93.7	92.5	91.4
Anthracene-d10	1719-06-8	0.5	%	103	102	107	105	103

Page	: 14 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	: GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E16	E17	E18	E19	E20
	Cli	ent sampli	ng date / time	14-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-016	ES1723266-017	ES1723266-018	ES1723266-019	ES1723266-020
				Result	Result	Result	Result	Result
EP075(SIM)T: PAH Surrogates - Continued	d							
4-Terphenyl-d14	1718-51-0	0.5	%	82.5	82.2	86.4	84.8	84.0
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	110	110	97.0	104	102
Toluene-D8	2037-26-5	0.2	%	86.8	92.3	83.5	78.5	81.5
4-Bromofluorobenzene	460-00-4	0.2	%	87.6	88.7	83.9	79.7	88.8

Page : 15 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E21	E22	E23	E24	S1
	Cli	ent samplii	ng date / time	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	14-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-021	ES1723266-022	ES1723266-023	ES1723266-024	ES1723266-025
				Result	Result	Result	Result	Result
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	7.8	6.4	9.0	5.2	8.2
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	49	244	215	588	104
EA055: Moisture Content (Dried @	∂ 105-110°C)							
Moisture Content		1.0	%	19.0	9.9	19.2	11.3	10.4
A080: Resistivity								
Resistivity at 25°C		1	ohm cm					9620
ED040S : Soluble Sulfate by ICPA			-					
Sulfate as SO4 2-	14808-79-8	10	mg/kg					40
		10	mgmg					••
ED045G: Chloride by Discrete Ana Chloride		10	malka					40
	16887-00-6	10	mg/kg					40
EG005T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg	7	19	17	8	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	12	14	21	18	
Copper	7440-50-8	5	mg/kg	31	37	26	27	
Lead	7439-92-1	5	mg/kg	11	17	18	17	
Nickel	7440-02-0	2	mg/kg	11	8	20	13	
Zinc	7440-66-6	5	mg/kg	76	59	61	68	
G035T: Total Recoverable Merci	ury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	

Page : 16 of 22 Work Order : ES1723266 Client : GROUND TECHNOLOGIES Project : GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E21	E22	E23	E24	S1
	Cl	ient sampli	ng date / time	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	14-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-021	ES1723266-022	ES1723266-023	ES1723266-024	ES1723266-025
			-	Result	Result	Result	Result	Result
P075(SIM)B: Polynuclear Aromatic Hy	drocarbons - Cont	inued						
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Sum of polycyclic aromatic hydrocarbons		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	
EP080/071: Total Petroleum Hydrocarb	ons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	
C6 - C10 Fraction minus BTEX	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	
(F1)	-							
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Total Xylenes	1330-20-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	

Page	: 17 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	: GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	E21	E22	E23	E24	S1
	Cli	ent sampli	ing date / time	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	14-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-021	ES1723266-022	ES1723266-023	ES1723266-024	ES1723266-025
				Result	Result	Result	Result	Result
EP075(SIM)S: Phenolic Compound	Surrogates - Continued							
Phenol-d6	13127-88-3	0.5	%	80.9	77.2	78.9	76.8	
2-Chlorophenol-D4	93951-73-6	0.5	%	95.1	92.7	90.5	97.8	
2.4.6-Tribromophenol	118-79-6	0.5	%	81.1	85.8	76.4	85.3	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	97.7	94.9	102	97.7	
Anthracene-d10	1719-06-8	0.5	%	106	100	96.8	94.1	
4-Terphenyl-d14	1718-51-0	0.5	%	108	103	100.0	101	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	90.5	104	92.9	97.0	
Toluene-D8	2037-26-5	0.2	%	94.6	110	97.3	103	
4-Bromofluorobenzene	460-00-4	0.2	%	90.8	103	90.4	97.7	

Page	: 18 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	: GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			S2	S3	S4	S5	S6
	Cli	ent sampli	ng date / time	14-Sep-2017 00:00	14-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-026	ES1723266-027	ES1723266-028	ES1723266-029	ES1723266-030
				Result	Result	Result	Result	Result
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	8.6	8.3	6.2	6.1	5.8
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	474	484	502	458	212
EA055: Moisture Content (Dried @ 10	5-110°C)							
Moisture Content		1.0	%	15.4	14.9	16.2	16.6	8.2
EA080: Resistivity								
Resistivity at 25°C		1	ohm cm	2110	2070	1990	2180	4720
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	370	100	460	360	180
ED045G: Chloride by Discrete Analyse	er							
Chloride	16887-00-6	10	mg/kg	230	730	540	550	170

Page	: 19 of 22
Work Order	ES1723266
Client	: GROUND TECHNOLOGIES
Project	: GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)	Client sample ID			S7	S8	AS1	AS2	AS3
	Cli	ient sampli	ing date / time	15-Sep-2017 00:00	15-Sep-2017 00:00	14-Sep-2017 00:00	14-Sep-2017 00:00	14-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-031	ES1723266-032	ES1723266-033	ES1723266-034	ES1723266-035
				Result	Result	Result	Result	Result
EA002 : pH (Soils)								
pH Value		0.1	pH Unit	6.0	9.0			
EA010: Conductivity								
Electrical Conductivity @ 25°C		1	µS/cm	256	226			
EA055: Moisture Content (Dried @ 10	05-110°C)							
Moisture Content		1.0	%	5.8	18.7			
EA080: Resistivity								
Resistivity at 25°C		1	ohm cm	3910	4420			
EA200: AS 4964 - 2004 Identification	of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg			No	No	No
Asbestos Type	1332-21-4	-				-	-	-
Sample weight (dry)		0.01	g			707	772	701
APPROVED IDENTIFIER:		-				S.SPOONER	S.SPOONER	S.SPOONER
ED040S : Soluble Sulfate by ICPAES								
Sulfate as SO4 2-	14808-79-8	10	mg/kg	140	110			
ED045G: Chloride by Discrete Analys	ser							
Chloride	16887-00-6	10	mg/kg	220	70			

Page	: 20 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	: GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	AS4	AS5	AS6	AS7	AS8
	Client sampling date / time			14-Sep-2017 00:00	14-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00
Compound	CAS Number	LOR	Unit	ES1723266-036	ES1723266-037	ES1723266-038	ES1723266-039	ES1723266-040
				Result	Result	Result	Result	Result
EA200: AS 4964 - 2004 Identification	on of Asbestos in Soils	;						
Asbestos Detected	1332-21-4	0.1	g/kg	No	Yes	No	No	No
Asbestos Type	1332-21-4	-		-	Ch	-	-	-
Sample weight (dry)		0.01	g	954	839	404	832	751
APPROVED IDENTIFIER:		-		S.SPOONER	C.OWLER	S.SPOONER	S.SPOONER	G.MORGAN

Page	: 21 of 22
Work Order	: ES1723266
Client	: GROUND TECHNOLOGIES
Project	; GTE1355 (BOSLEY PARK)

Sub-Matrix: SOIL (Matrix: SOIL)		Clie	ent sample ID	AS9	AS10	AS11		
	Client sampling date / time			15-Sep-2017 00:00	15-Sep-2017 00:00	15-Sep-2017 00:00		
Compound	CAS Number	LOR	Unit	ES1723266-041	ES1723266-042	ES1723266-043		
				Result	Result	Result		
EA200: AS 4964 - 2004 Identification	EA200: AS 4964 - 2004 Identification of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No		
Asbestos Type	1332-21-4	-		-	-	-		
Sample weight (dry)		0.01	g	1040	920	141		
APPROVED IDENTIFIER:		-		G.MORGAN	S.SPOONER	S.SPOONER		

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Client sample ID - Client sampling date / time	Analytical Results						
EA200: AS 4964 - 2004 Identification of Asbestos in Soils								
EA200: Description	AS1 - 14-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS2 - 14-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS3 - 14-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS4 - 14-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS5 - 14-Sep-2017 00:00	Mid brown clay soil plus one piece of asbestos cement sheeting approx 20 x 18 x 7mm						
EA200: Description	AS6 - 15-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS7 - 15-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS8 - 15-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS9 - 15-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS10 - 15-Sep-2017 00:00	Mid brown clay soil						
EA200: Description	AS11 - 15-Sep-2017 00:00	Mid brown sandy soil						

Surrogate Control Limits

Sub-Matrix: SOIL		Recover	ry Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound	Surrogates		
Phenol-d6	13127-88-3	63	123
2-Chlorophenol-D4	93951-73-6	66	122
2.4.6-Tribromophenol	118-79-6	40	138
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	70	122
Anthracene-d10	1719-06-8	66	128
4-Terphenyl-d14	1718-51-0	65	129
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	133
Toluene-D8	2037-26-5	74	132
4-Bromofluorobenzene	460-00-4	72	130